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Abstract

A novel category of explicit conservative numerical methods with arbitrarily high-order is introduced for solving the
onlinear fractional Schrödinger wave equations in one and two dimensions. The proposed method is based on the scalar
uxiliary variable approach. The equations studied is first transformed into an equivalent system by introducing a scalar auxiliary
ariable, and the energy is then reformulated as a sum of three quadratic terms. Applying the explicit relaxation Runge–Kutta
ethods in temporal and the Fourier pseudo-spectral discretization in spatial, the resulting time–space full discrete scheme

s proved to preserve the reformulated energy in the discrete level to machine accuracy. The proposed methods improve the
umerical stability during long-term computations, as demonstrated through numerical experiments. Also this idea can be easily
xtended to other similar equations, such as the nonlinear fractional wave equation and the fractional Klein–Gordon–Schrödinger
quation.
2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

eserved.

eywords: Structure-preserving method; Fractional Schrödinger wave equations; Explicit relaxation Runge–Kutta method; Scalar auxiliary
ariable approach; Fourier pseudo-spectral method

1. Introduction

This paper focuses on the numerical solution of the initial boundary-value problems of the nonlinear fractional
chrödinger wave equations (NFSWEs) as follows

ut t + (−∆)α/2u + iκut + βg(|u|
2)u = 0, x ∈ Ω , t ∈ (0, T ], (1.1)

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω , (1.2)

u(x + L, t) = u(x, t), t ∈ [0, T ], (1.3)

where, i =
√

−1, 1 < α ≤ 2, and κ, β(> 0) are two real constants, u(x, t) is unknown complex valued function,
0(x) and u1(x) are known smooth functions, the nonlinear term g is a given real function, x ∈ Ω ⊂ Rd (d = 1, 2)
nd L is the period. The fractional Laplacian operator can be expressed in terms of the Fourier transform, as

(−∆)
α
2 u(x, t) = F−1 [

|ξ |
αF(u(ξ , t))

]
, (1.4)
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where F and F−1 denote the Fourier transform and its inverse respectively, see [3]. The NFSWEs (1.1) can
be considered as a generalization of the classical Schrödinger wave equations, the latter has numerous physical
applications such as the Langmuir wave envelope approximation in plasma [6], and has been studied in depth, see
e.g., [1,2,5,20].

Due to its importance in both theoretical and applied physics, there has been a great deal of interest in developing
efficient and accurate numerical methods for solving the NFSWEs (1.1). Noticing that the NFSWEs has the
following conservation law of energy

E(t) = ∥ut (·, t)∥2
+

(−∆)
α
4 u(·, t)

2
+

β

2

∫
Rd

G
(
|u|

2) dx = E(0), 0 ≤ t ≤ T, (1.5)

where G(s) =
∫ s

0 g(z)dz, see [1,13]. The scholars have a more significant interest in structure-preserving methods.
This is because, for conservative problems, numerical methods that can preserve the underlying invariance are
usually advantageous. Besides, conservative schemes can achieve good stability in long-time simulations. In the
past few years, some structure-preserving methods for the NFSWEs have been proposed. For instance, Ran and
Zhang [13] developed a three-level linearly implicit difference scheme that preserves a modified discrete mass
and energy. Li and Zhao [12] proposed a conservative method by combining the Crank–Nicolson method and the
Galerkin finite element method. Moreover, a fast Krylov subspace solver is introduced to reduce computational
cost. Cheng and Qin [4] developed a linearly-implicit conservative scheme based on the scalar auxiliary variable
(SAV) method, which preserves only a modified energy, but not mass. Hu et al. [9] proposed three energy-preserving
spectral Galerkin methods by applying the Crank–Nicolson, SAV, and exponential-SAV (ESAV) methods in time,
respectively. Zhang and Ran [21] proposed and analyzed the higher order energy-preserving difference scheme based
on triangular-SAV (T-SAV) approach. Nevertheless, most of these methods proposed in the above paper are only
focused on the one-dimensional case, have no higher than second-order accuracy in time, and/or are fully-implicit.
It means that there are still many open questions, and efficient, accurate and explicit numerical methods would be
desirable for future investigations, especially for high dimensions.

Among the various numerical methods with high-order accuracy, explicit Runge–Kutta (RK) methods are good
candidates, because they belong to one-step methods, and have the characteristics of high order accuracy and
simplicity of implementation. However, the standard RK methods do not necessarily preserve the desired physical
properties of the system. To overcome this issue, Ketcheson [10] proposed the relaxation Runge–Kutta (RRK)
method, which guarantees conservation or stability with respect to any inner product norm. Later, the RRK technique
has been extended to general convex quantities in [15]. Hence, the conservation, dissipation, or other properties with
respect to any convex functional are enforced by the addition of a relaxation parameter that multiplies the Runge–
Kutta update at each step. The trade-off for these advantages is that a nonlinear algebraic system has to be solved
to determine the relaxation parameter. Nevertheless, the construction of explicit conservative schemes for the case
of non-quadratic invariants has not been considered by the authors. Fortunately, the invariant energy quadratization
(IEQ) approach [18,19] and the SAV approach [4] can transform the non-quadratic energy into a quadratic form of
a new variable via a change of variables, and the resulting new, equivalent system still retains a similar energy law
in terms of the new variables. Motivated by these developments, this paper aims to develop numerical methods for
the NFSWEs in one and two dimensions by combining the SAV method and the explicit RRK method. And the
proposed method has the following advantages:

• explicit scheme;
• has accuracy of arbitrary high order in temporal direction;
• preserves the invariant quantity (1.5).

The remainder of this work is organized as follows. In Section 2, we reformulate the NFSWEs (1.1) into an
equivalent system by introducing a scalar auxiliary variable. Section 3 obtains a semi-discrete conservative system
by applying the Fourier pseudo-spectral approximation to the resulting reformulation. In Section 4, we present the
explicit fully-discrete schemes for the reformulated semi-discrete systems by applying the relaxation Runge–Kutta
method in time, and the proposed scalar auxiliary variable relaxation Runge–Kutta (SAV-RRK) schemes preserve
the same convergence order as the standard scalar auxiliary variable Runge–Kutta (SAV-RK) method. We further
estimate the relaxation coefficient introduced and then obtain the accuracy of the relaxation methods in Section 5.
Numerical examples are presented in Section 6 to demonstrate the accuracy and conservation properties of the

proposed schemes. A brief conclusion is drawn in Section 7.

127



Y. Liu and M. Ran Mathematics and Computers in Simulation 216 (2024) 126–144

p
d
q
r
f

(

T

2. SAV reformulations of the NFSWEs

It is well-known that all RK methods preserve arbitrary linear invariants, and only symplectic RK methods
reserve arbitrary quadratic invariants. However, no RK methods can preserve arbitrary polynomial invariants of a
egree higher than two or non-polynomial nonlinear invariants. To overcome this limitation and take advantage of the
uadratic invariant-preserving property of relaxation RK methods, we adopt the newly developed SAV approach to
ewrite high-degree energy functions as quadratic ones. It allows the NFSWEs (1.1) to be reformulated in equivalent
orms that admit quadratic energy functions.

In order to maintain the positivity of the energy, we modify the energy in (1.5) by adding a positive constant C0

to β

2

∫
Rd G

(
|u|

2) dx. This modification has no essential effect on the energy invariance of the system described in
1.5). Thus we will continue to use E(t) for the modified energy, i.e.,

E(t) def
= ∥ut (·, t)∥2

+

(−∆)
α
4 u(·, t)

2
+

β

2

∫
Rd

G
(
|u|

2) dx + C0. (2.1)

In this, we consider a new scalar variable

w(t) def
=

√
H (t) + C0 with H (t) def

=
β

2

∫
Ω

G
(
|u|

2) dx =
β

2

∫
Ω

∫
|u|

2

0
g(z)dzdx. (2.2)

he direct calculation produces that

wt =
1

2
√

H (t) + C0

d H (t)
dt

=
1

2
√

H (t) + C0

d
dt

∫
Ω

G(|u|
2)dx

=
β

√
H (t) + C0

∫
Ω

g(|u|
2)ℜ (uūt ) dx

= ℜ

∫
Ω

βg(|u|
2)uūt

√
H (t) + C0

dx

= ℜ (b(u), ut ) , (2.3)

where

b(u) def
= βg(|u|

2)u/
√

H (t) + C0, (2.4)

ℜ denotes the real part and (·, ·) means the L2-inner product over Ω .
As a result, the NFSWEs (1.1)–(1.3) can be equivalently rewritten as

ut = v, (2.5)

vt = −(−∆)α/2u − iκv − b(u)w, (2.6)

wt = ℜ (b(u), ut ) , (2.7)

with the initial conditions

u(x, 0) = u0(x), v(x, 0) = u1(x), w(0) =

√
β

2

∫
Rd

G
(
|u0|

2) dx + C0. (2.8)

Taking the inner product of systems (2.5)–(2.6) respectively with vt and ut , multiplying (2.7) by w(t), summing
the resulting equations, and finally taking an integration over the time interval [0, t] for the real part, one immediately
has the modified energy conservation law

E(t) = ∥v(·, t)∥2
+

(−∆)
α
4 u(·, t)

2
+ w2(t) = E(0), (2.9)

which is essentially consistent with the original energy-conservation law (1.5) for NFSWEs (1.1)–(1.3).
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3. Structure-preserving spatial discretization

Without loss of generality, we assume that the spatial dimension is two (i.e., d = 2). The Fourier pseudo-
pectral method is a well-established technique for solving partial differential equations that can provide accurate
nd efficient approximations. This method involves approximating the solution in the spectral domain, where the
erivatives are computed using fast Fourier transforms. Therefore, we utilize the Fourier pseudo-spectral method
or the spatial discretization of the equivalent systems (2.5)–(2.8).

For positive integer M and even positive integers Nx and Ny , denote τ = T/M, hx = L/Nx , h y = L/Ny .
efine Ωh =

{(
xi , y j

)
| 0 ≤ i ≤ Nx − 1; 0 ≤ j ≤ Ny − 1

}
,Ωτ = {tm | 0 ≤ m ≤ M} and Ω τ

h = Ωh × Ωτ , with
m = mτ, xi = ihx and y j = jh y . The vector forms at any time level tm are given by

U m
=

(
um

0,0, . . . , um
Nx −1,0, um

0,1, . . . , um
Nx −1,1, . . . , um

0,Ny−1, . . . , um
Nx −1,Ny−1

)T
, (3.1)

V m
=

(
vm

0,0, . . . , v
m
Nx −1,0, v

m
0,1, . . . , v

m
Nx −1,1, . . . , v

m
0,Ny−1, . . . , v

m
Nx −1,Ny−1

)T
, (3.2)

W m
= wm . (3.3)

For any grid functions u and v defined on Ωh , we define the discrete inner product and the associated discrete
orms as

(u, v) = hx h y

Nx −1∑
i=0

Ny−1∑
j=0

ui, j v̄i, j , ∥u∥ = (u, u)
1
2 , ∥u∥∞ = sup

(xi ,y j)∈Ωh

⏐⏐ui, j
⏐⏐ . (3.4)

Let
(
xi , y j

)
∈ Ωh be the Fourier collocation points. Denote uN (x, y) is the interpolation polynomial function of

(x, y), then we have

uN (x, y) =

Nx /2∑
k1=−Nx /2

Ny/2∑
k2=−Ny/2

ũk1,k2eiµ(k1(x+L)+k2(y+L)), (3.5)

n which µ = π/L , and the coefficients

ũk1,k2 =
1

Nx ck1

1
Nyck2

Nx −1∑
l1=0

Ny−1∑
l2=0

u(xl1 , yl2 )e−iµ
(

k1(xl1 +L)+k2(yl2 +L)
)
, (3.6)

where ck1 = 1 for |k1| < Nx/2, ck2 = 1 for |k2| < Ny/2, ck1 = 2 for k1 = ±Nx/2, and ck2 = 2 for k2 = ±Ny/2.

As a result, the fractional Laplacian (−∆)
α
2 u(x, y) can be approximated by

(−∆)
α
2 uN (x, y) =

Nx /2∑
k1=−Nx /2

Ny/2∑
k2=−Ny/2

⏐⏐(k1µ)2
+ (k2µ)2

⏐⏐ α
2 ũk1,k2eiµ(k1(x+L)+k2(y+L)). (3.7)

nserting (3.6) into (3.7), and considering the resulting equation at the point (xi , y j ) gives that

(−∆)
α
2 uN

(
xi , y j

)
=

Nx −1∑
l1=0

Ny−1∑
l2=0

u(xl1 , yl2 )
( Nx /2∑

k1=−Nx /2

Ny/2∑
k2=−Ny/2

1
Nx ck1

1
Nyck2

⏐⏐µ2
· k2

⏐⏐ α
2 eiµ

(
k1

(
xi −xl1

)
+k2

(
y j −yl2

)))
= (DαU )i+ j Nx , (3.8)

here µ2
· k2

= µ2
(
k2

1 + k2
2

)
, Dα is spectral symmetric differential matrix with the elements

(Dα)i+ j Nx ,l1+l2 Nx =

Nx −1∑
l1=0

Ny−1∑
l2=0

1
Nx ck1

1
Nyck2

⏐⏐µ2
· k2

⏐⏐ α
2 eiµ

(
k1

(
xi −xl1

)
+k2

(
y j −yl2

))
. (3.9)

Above all, applying the Fourier pseudo-spectral method to the previous equivalent system (2.5)–(2.7) in space
ives the semi-discrete system as follows

U = V, (3.10)
t
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l

T

Vt = DαU − iκV − b(U ) · W, (3.11)

Wt = ℜ (b(U ), Ut ) , (3.12)

with the initial conditions U 0, V 0, W 0, where · means the point multiplication between vectors.
For the semi-discrete system (3.10)–(3.12), we have the following theorem.

Theorem 3.1. The space semi-discrete system (3.10)–(3.12) admits the semi-discrete quadratic energy conservation
aw

d E
dt

= 0, (3.13)

where

E(U, V, W )
def
= ∥V ∥

2
+ ∥D

α
2 U∥

2
+ (W )2 . (3.14)

Proof. Taking the inner product of (3.10), (3.11) with Vt and Ut respectively, and multiplying (3.12) by W , we get

(Vt , Ut ) = (Vt , V ) , (3.15)

(Vt , Ut ) = (DαU, Ut ) − iκ (V, Ut ) − W (b(U ), Ut ) , (3.16)

W Wt = Wℜ (b(U ), Ut ) . (3.17)

Summing the resulting equations (3.15)–(3.17), we have

(Vt , V ) + W Wt = (DαU, Ut ) − iκ (V, Ut ) − W (b(U ), Ut ) + Wℜ (b(U ), Ut ) . (3.18)

Taking the real part in above equation gives

ℜ (Vt , V ) + ℜ (W Wt ) = ℜ (DαU, Ut ) − ℜ (iκ (V, Ut )) − Wℜ (b(U ), Ut ) + Wℜ (b(U ).Ut ) . (3.19)

Thus, we know that

ℜ (Vt , V ) + ℜ (W Wt ) = ℜ (DαU, Ut ) . (3.20)

Noticing that

ℜ (Vt , V ) =
1
2

d
dt

∥V ∥
2, ℜ (W Wt ) =

1
2

d
dt

(W )2 , ℜ (DαU, Ut ) = −
1
2

d
dt

∥D
α
2 U∥

2, (3.21)

and substituting (3.21) into (3.20) leads to
d
dt

(
∥V ∥

2
+ ∥D

α
2 U∥

2
+ (W )2

)
= 0. (3.22)

This completes the proof. □

4. Conservative explicit SAV-RRK methods

This section is devoted to present the invariant-conserving explicit RRK methods for the NFSWEs based on the
SAV approach. We begin by recalling RRK methods and discussing their structure-preserving properties.

4.1. Explicit SAV-RRK schemes

For brevity, we introduce following symbols

y = (U, V, W )T , y0 =
(
U 0, V 0, W 0)T

, f = ( f 1, f 2, f 3)T def
= (V, DαU − iκV − b(U ) · W, ℜ (b(U ), Ut ))T .

(4.1)

hen the semi-discrete system (3.10)–(3.12) based on SAV approach can be rewritten as{
yt = f ( y), t ∈ (0, T ],

(4.2)
y(0) = y0.
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a
S
i

γ

Let ym be the approximation to y (tm). A s-stage explicit RK method [8] applied to (4.2) takes the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y mi = ym

+ τ

i−1∑
j=1

ai j f mj , i = 1, . . . , s,

ym+1
= ym

+ τ

s∑
i=1

bi f mi ,

(4.3)

where f mj = f
(
Y mj

)
, j = 1, . . . , s. With the following notations

A =
(
ai j

)
s×s , ai j = 0 for j ≥ i,

b = (b1, . . . , bs)
T ,

(4.4)

the s-stage explicit SAV-RK methods can be represented by a Butcher tableau

c A

bT
(4.5)

where the abscissa vectors c = (c1, c2, . . . , cs) satisfy ci =
∑s

j=1 ai j , i = 1, . . . , s.
However, it is well known that only special implicit RK methods may be symplectic or algebraically stable,

nd there are no symplectic or algebraically stable explicit RK methods. This leads to the fact that the explicit
AV-RK methods fail to preserve the underlying conservation property of the original problem (4.2). Thus, we

ntroduce the explicit SAV-RRK method. Concretely, consider a single step over the interval
[
t̂m, t̂m+1

]
, m ≥ 0, and

let ym
γ =

(
U m

γ , V m
γ , W m

γ

)T be the numerical approximation to y
(
t̂m

)
, then a s-stage explicit SAV-RRK method for

(4.2) is defined as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y mi = ym

γ + τ

i−1∑
j=1

ai j f mj , i = 1, . . . , s,

ym+1
γ = ym

γ + γmτ

s∑
i=1

bi f mi .

(4.6)

Similarly, the s-stage RRK methods (4.6) can be represented by a Butcher tableau

c A

b̃T
(4.7)

where b̃ = γmb and γm ̸= 0 satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Em+1

γ = Em
γ , i f

s∑
i=1

bi f mi ̸= 0,

γm = 1, i f
s∑

i=1

bi f mi = 0,

(4.8)

where

Em
γ = ∥V m+1

γ ∥
2
+ ∥D

α
2 U m

γ ∥
2
+

(
W m

γ

)2
. (4.9)

An outstanding advantage of the explicit SAV-RRK method (4.6) is that one can calculate explicitly the parameter
m . In fact, one knows from (4.8) that γm = 1 for

∑s
i=1 bi f mi = 0. When

∑s
i=1 bi f mi ̸= 0, by a straightforward

calculation one can get that

Em+1
γ =∥V m+1

γ ∥
2
+ ∥D

α
2 U m+1

γ ∥
2
+

(
W m+1

γ

)2

=∥V m+1
∥

2
−

(
U m+1, DαU m+1)

+
(
W m+1)2
γ γ γ γ
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T

w

T

=∥V m
γ + γmτ

s∑
i=1

bi f 2
mi∥

2
+

(
W m

γ + γmτ

s∑
i=1

bi f 3
mi

)2

−
(
U m

γ + γmτ

s∑
i=1

bi f 1
mi , Dα

(
U m

γ + γmτ

s∑
i=1

bi f 1
mi

))
=∥V m

γ ∥
2
+ ∥D

α
2 U m

γ ∥
2
+

(
W m

γ

)2

+
(
V m

γ , γmτ

s∑
i=1

bi f 2
mi

)
+

(
γmτ

s∑
i=1

bi f 2
mi , V m

γ

)
+

γmτ

s∑
i=1

bi f 2
mi

2

−
(
U m

γ , Dα
(
γmτ

s∑
i=1

bi f 1
mi

))
−

(
γmτ

s∑
i=1

bi f 1
mi , DαU m

γ

)
+

D
α
2
(
γmτ

s∑
i=1

bi f 1
mi

)2
+ 2W m

γ γmτ

s∑
i=1

bi f 3
mi +

(
γmτ

s∑
i=1

bi f 3
mi

)2

=Em
γ + γmτ

[(
V m

γ ,

s∑
i=1

bi f 2
mi

)
+

( s∑
i=1

bi f 2
mi , V m

γ

)
−

(
U m

γ , Dα
( s∑

i=1

bi f 1
mi

))
−

( s∑
i=1

bi f 1
mi , DαU m

γ

)
+ 2W m

γ

s∑
i=1

bi f 3
mi

]
+ γ 2

mτ 2[ s∑
i=1

bi f 2
mi

2
+

D
α
2
( s∑

i=1

bi f 1
mi

)2
+

( s∑
i=1

bi f 3
mi

)2]
. (4.10)

his together with (4.8) gives that

γmτ
[(

V m
γ ,

s∑
i=1

bi f 2
mi

)
+

( s∑
i=1

bi f 2
mi , V m

γ

)
−

(
U m

γ , Dα
( s∑

i=1

bi f 1
mi

))
−

( s∑
i=1

bi f 1
mi , DαU m

γ

)
+ 2W m

γ

s∑
i=1

bi f 3
mi

]
+ γ 2

mτ 2[ s∑
i=1

bi f 2
mi

2
+

D
α
2
( s∑

i=1

bi f 1
mi

)2
+

( s∑
i=1

bi f 3
mi

)2]
= 0,

hich is a quadratic algebraic equation for γm . Noting that γm ̸= 0, thus

γm =

(
V m

γ ,
∑s

i=1 bi f 2
mi

)
+

(∑s
i=1 bi f 2

mi , V m
γ

)
−

(
U m

γ , Dα
(∑s

i=1 bi f 1
mi

))
−

(∑s
i=1 bi f 1

mi , DαU m
γ

)
+ 2W m

γ

∑s
i=1 bi f 3

mi

−τ
[ ∑s

i=1 bi f 2
mi

2
+

D
α
2
(∑s

i=1 bi f 1
mi

)2
+

(∑s
i=1 bi f 3

mi

)2] . (4.11)

his means that the value of γm can also be explicitly determined by (4.11) when
∑s

i=1 bi f mi ̸= 0.
Actually, the value of γm defined in (4.8) is close to 1 as τ → 0, which will be further discussed in Section 5.1.

Therefore, the explicit SAV-RRK methods (4.6) are well-defined. Moreover, it can be proved that the proposed
methods preserve the energy invariance described in the following theorem.

Theorem 4.1. Suppose the order of explicit SAV-RK methods (4.3) is at least two, then the solution to explicit
SAV-RRK methods (4.6) satisfies

Em+1
γ = Em

γ , (4.12)

where Em
γ is fined by (4.9).

Proof. When
∑s

i=1 bi f mi = 0, it follows from the second equation in (4.6) that ym+1
γ ≡ ym

γ , which automatically
satisfies (4.12). For the case of

∑s
i=1 bi f mi ̸= 0, we can also get (4.12) from the condition (4.8). This proof is

completed. □
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5. Accuracy of the explicit SAV-RRK methods

In this section, we will discuss the accuracy of the explicit SAV-RRK methods (4.6). To this end, we first estimate
he relaxation coefficient γm , which plays a key role in the next analysis. Since the relaxation coefficient γm tends to

vary from step to step, it can be estimated in the similar way over different steps. From this, here we just consider
a single step over the interval

[
t̂m, t̂m+1

]
.

5.1. Estimate of the relaxation coefficient

We will only focus on the case of
∑s

i=1 bi f mi ̸= 0, because the converse is simple.
Let

Sm(γ ) =
V m

γ + γ τ

s∑
i=1

bi f 2
mi

2
+

D
α
2
(
U m

γ + γ τ

s∑
i=1

bi f 1
mi

)2

+
(
W m

γ + γ τ

s∑
i=1

bi f 3
mi

)2
− ∥V m

γ ∥
2
− ∥D

α
2 U m

γ ∥
2
−

(
W m

γ

)2
,

(5.1)

then the value of γm defined in (4.8) is exactly the nonzero root of the function Sm(γ ).
Moreover, we have following results on Sm(γ ).

Lemma 5.1. Suppose the order of explicit SAV-RK methods (4.3) is p, then it holds that

Sm(1) = O(τ p+1). (5.2)

Proof. Similar to the proof of Lemma 3.1 in [11], we consider the initial value problem{
ỹ′

= f ( ỹ), t ≥ t̂m,

ỹ
(
t̂m

)
= ym

γ ,
(5.3)

where ym
γ is the solution to explicit SAV-RRK methods (4.6). By performing a single step using the explicit

SAV-RRK methods (4.6), we arrive at the numerical solution ym+1
γ . It follows from (5.1) that

Sm(γ ) =∥V m+1
γ ∥

2
+ ∥D

α
2 U m+1

γ ∥
2
+

(
W m+1

γ

)2
− ∥V m

γ ∥
2
− ∥D

α
2 U m

γ ∥
2
−

(
W m

γ

)2

=∥V m+1
γ ∥

2
+ ∥D

α
2 U m+1

γ ∥
2
+

(
W m+1

γ

)2
− ∥Ṽ (t̂m)∥2

− ∥D
α
2 Ũ (t̂m)∥2

−
(
W̃ (t̂m)

)2
.

(5.4)

From ym
γ , the explicit SAV-RK methods (4.3) of order p generates the numerical solution ỹm+1, which satisfies

ỹm+1
= ỹ

(
t̂m + τ

)
+O

(
τ p+1

)
for sufficiently small τ . It is crucial to observe that the explicit SAV-RRK methods

efined by (4.6) will reduce to the explicit SAV-RK methods described by (4.3) when γ = 1. That is ym+1
γ = ỹm+1.

onsequently, we can derive that

Sm(1) =∥Ṽ m+1
∥

2
+ ∥D

α
2 Ũ m+1

∥
2
+

(
W̃ m+1)2

− ∥Ṽ (t̂m)∥2
− ∥D

α
2 Ũ (t̂m)∥2

−
(
W̃ (t̂m)

)2

=∥Ṽ m+1
∥

2
− ∥Ṽ (t̂m + τ )∥2

+ ∥Ṽ (t̂m + τ )∥2
− ∥Ṽ (t̂m)∥2

+ ∥D
α
2 Ũ m+1

∥
2
− ∥D

α
2 Ũ (t̂m + τ )∥2

+ ∥D
α
2 Ũ (t̂m + τ )∥2

− ∥D
α
2 Ũ (t̂m)∥2

+
(
W̃ m+1)2

−
(
W̃ (t̂m + τ )

)2
+

(
W̃ (t̂m + τ )

)2
−

(
W̃ (t̂m)

)2

=O
(
τ p+1)

+ 2
∫ t̂m+τ

t̂m

[
ℜ

(
Vt , V

)
+ ℜ

(
W Wt

)
− ℜ

(
DαU, Ut

)]
dt. (5.5)

By combining (5.5) and (3.20), this proof is complete. □

Based on Lemma 5.1, we can get the following estimation for the relaxation coefficient γm .

Theorem 5.2. Suppose the order of explicit SAV-RK methods (4.3) is p (p ≥ 2), then the relaxation coefficient
γm defined in (4.8) satisfies

γ = 1 + O(τ p−1). (5.6)
m
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Proof. Let us consider two cases based on the value of
∑s

i=1 bi f mi .
Case 1: According the definition of γm in (4.8), we have γm = 1 when

∑s
i=1 bi f mi = 0, which automatically

satisfies (5.6).
Case 2: When

∑s
i=1 bi f mi ̸= 0, it follows from (4.10) that

Sm(γ ) = Em+1
γ − Em

γ

= γ τ
[
(V m

γ ,

s∑
i=1

bi f 2
mi ) + (

s∑
i=1

bi f 2
mi , V m

γ ) − (U m
γ , Dα(

s∑
i=1

bi f 1
mi )) − (

s∑
i=1

bi f 1
mi , DαU m

γ )

+ 2W m
γ

s∑
i=1

bi f 3
mi

]
+ γ 2τ 2

[
∥

s∑
i=1

bi f 2
mi∥

2
+ ∥D

α
2 (

s∑
i=1

bi f 1
mi )∥

2
+ (

s∑
i=1

bi f 3
mi )

2
]
. (5.7)

oting that Sm(γ ) is a quadratic function of γ , it has non-zero root

γ =

τ
[
(V m

γ ,
∑s

i=1 bi f 2
mi ) + (

∑s
i=1 bi f 2

mi , V m
γ ) − (U m

γ , Dα(
∑s

i=1 bi f 1
mi )) − (

∑s
i=1 bi f 1

mi , DαU m
γ ) + 2W m

γ

∑s
i=1 bi f 3

mi

]
−τ 2

[
∥
∑s

i=1 bi f 2
mi ∥

2 + ∥D
α
2 (

∑s
i=1 bi f 1

mi )∥
2 + (

∑s
i=1 bi f 3

mi )
2
] . (5.8)

ased on Lemma 5.1, we have

Sm(1) =τ
[
(V m

γ ,

s∑
i=1

bi f 2
mi ) + (

s∑
i=1

bi f 2
mi , V m

γ ) − (U m
γ , Dα(

s∑
i=1

bi f 1
mi )) − (

s∑
i=1

bi f 1
mi , DαU m

γ )

+ 2W m
γ

s∑
i=1

bi f 3
mi

]
+ τ 2

[
∥

s∑
i=1

bi f 2
mi∥

2
+ ∥D

α
2 (

s∑
i=1

bi f 1
mi )∥

2
+ (

s∑
i=1

bi f 3
mi )

2
]

=O(τ p+1). (5.9)

efining f̃ m = f
(

y
(
t̃m

))
, then we have f mi = f̃ m + O(τ ) as τ → 0. Thus, it holds that

τ 2
[
∥

s∑
i=1

bi f 2
mi∥

2
+ ∥D

α
2 (

s∑
i=1

bi f 1
mi )∥

2
+ (

s∑
i=1

bi f 3
mi )

2
]

=τ 2
[
∥

s∑
i=1

bi f̃ 2
mi∥

2
+ ∥D

α
2 (

s∑
i=1

bi f̃ 1
mi )∥

2
+ (

s∑
i=1

bi f̃ 3
mi )

2
]

+ O(τ 3)

=O(τ 2). (5.10)

ubstituting (5.10) and (5.9) into (5.8) yields that

γ = 1 +
O(τ p+1)

−τ 2
[
∥
∑s

i=1 bi f 2
mi∥

2 + ∥D
α
2 (

∑s
i=1 bi f 1

mi )∥2 + (
∑s

i=1 bi f 3
mi )2

]
= 1 +

O(τ p+1)
O(τ 2)

= 1 + O(τ p−1). (5.11)

This proof is completed. □

emark 5.3. Theorem 5.2 shows that the relaxation coefficient γm is close to 1 as τ → 0, which implies that the
relaxation methods can be considered as a small perturbation of the standard methods.

5.2. Truncation errors of the explicit SAV-RRK methods

Now we further study the accuracy of the explicit SAV-RRK methods (4.6) based on the estimates on the
relaxation coefficient γ given by Theorem 5.2.
m
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Before analyzing the accuracy of the methods, we rewrite the explicit SAV-RRK methods (4.6) into⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Y mi = ym

γ + τ

i−1∑
j=1

ai j f mj , i = 1, . . . , s,

ym+1
= ym

γ + τ

s∑
i=1

bi f mi ,

ym+1
γ = ym+1

+ (γm − 1)
(

ym+1
− ym

γ

)
.

(5.12)

The first two equations essentially form the standard explicit SAV-RK methods.
Similar to the discussion in [10], the numerical solution ym+1

γ at t̂m+1 can be interpreted in two ways, namely
he Incremental Direction Technique (IDT) and the Relaxation Technique (RT).

1. IDT’s angle: ym+1
γ is considered as an approximation to y

(
t̂m + τ

)
, where t̂m = tm for m ≥ 0.

2. RT’s angle: ym+1
γ is viewed as an approximation to y

(
t̂m + γmτ

)
, and t̂m may not be equal to tm when m > 0.

It is important to note that different interpretations of the numerical solution ym+1
γ can yield different convergence

esults. Following the idea of the proof of Lemma 2.7 in [14], we have obtained the following results.

heorem 5.4. Suppose the order of explicit SAV-RK methods (4.3) is p (p ≥ 2). Then the following statements
old:

• For IDT, the explicit SAV-RRK methods (4.6) have order p − 1.
• For RT, the explicit SAV-RRK methods (4.6) have order p.

roof. Let t̂mi = t̂m + ciτ, i = 1, . . . , s, then one has from the second equation in (5.12) that

y
(
t̂m + τ

)
= y

(
t̂m

)
+ τ

s∑
i=1

bi f
(

y
(
t̂mi

))
+ O

(
τ p+1) . (5.13)

Now we estimate the truncation error of the third equation in (5.12). Denote

φm( y(t)) def
= y

(
t̂m

)
+ τ

s∑
i=1

bi f
(

y
(
t̂mi

))
,

nd

y
(
t̂m+1

)
= φm( y(t)) + (γm − 1)

(
φm( y(t)) − y

(
t̂m

))
+ Tm+1. (5.14)

sing the fact that γm = 1 + O
(
τ p−1

)
given in Theorem 5.2, one can obtain from (5.13) that

Tm+1 = y
(
t̂m+1

)
− φm( y(t)) − (γm − 1)

(
φm( y(t)) − y

(
t̂m

))
= y

(
t̂m+1

)
−

(
y
(
t̂m + τ

)
− O(τ p+1)

)
− (γm − 1)

(
y
(
t̂m + τ

)
− O(τ p+1) − y

(
t̂m

))
= y

(
t̂m+1

)
− y

(
t̂m + τ

)
− (γm − 1)

(
y
(
t̂m + τ

)
− y

(
t̂m

))
+ O(τ p+1) + O((γm − 1)τ p+1)

= y
(
t̂m+1

)
− y

(
t̂m + τ

)
− (γm − 1) y′

(
t̂m + τ

)
τ + O((γm − 1)τ 2) + O(τ p+1)

= y
(
t̂m+1

)
− y

(
t̂m + τ

)
− (γm − 1) y′

(
t̂m + τ

)
τ + O(τ p+1).

(5.15)

For IDT, ym+1
γ is viewed as the approximation at t̂m + τ , so t̂m+1 = t̂m + τ , which implies that Tm+1 =

(γm − 1) y′
(
t̂m + τ

)
τ + O

(
τ p+1

)
= O (τ p). That is, this method (4.6) has order of p − 1.

For RT, since ym+1
γ is viewed as the approximation at t̂m + γmτ, t̂m+1 = t̂m + γmτ . Using the Taylor expansion

n the above estimate again, one gets

Tm+1 = y
(
t̂m + τ + (γm − 1) τ

)
− y

(
t̂m + τ

)
− (γm − 1) y′

(
t̂m + τ

)
τ + O(τ p+1)

= y
(
t̂m + τ

)
+ (γm − 1) y′

(
t̂m + τ

)
τ + O((γm − 1)2 τ 2)

− y
(
t̂m + τ

)
− (γm − 1) y′

(
t̂m + τ

)
τ + O(τ p+1)

=O(τ p+1), (5.16)

hich implies that this method (4.6) has order p. □
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Remark 5.5. In calculation, the order of IDT method might be higher than what we expect and even reaches the
order of RT method, which can be observed in Example 6.1.

Remark 5.6. The methods proposed in this paper can be easily applied to other similar fractional equations, such
as the nonlinear fractional wave equation, and the fractional Klein–Gordon–Schrödinger equation.

6. Numerical examples

In this section, we carry out several numerical experiments to illustrate the accuracy and conservation property
of the explicit SAV-RRK methods (4.6). Also some comparisons with other classical explicit SAV-RK methods are
supported.

Without loss of generality, the following explicit RK methods will be used in calculation.

1. RK(2, 2) : two-stage, second order Heun method

0 0 0
2
3

2
3 0
1
4

3
4

(6.1)

2. RK(3, 3) : three-stage, third order Heun method

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

(6.2)

3. RK(4, 4) : four-stage, fourth order Gill method

0 0 0 0 0
1
2

1
2 0 0 0

1
2

√
2−1
2 1 −

√
2

2 0 0
1 0 −

√
2

2 1 +

√
2

2 0
1
6

2−
√

2
6

2+
√

2
6

1
6

(6.3)

It is worth noting that the main focus of this work is accuracy in temporal. Therefore, the spectral accuracy
henomenon presented in spatial is not shown. Additionally, given the inherent positivity of the energy in our
umerical examples, we simply set the constant C0 = 0 in calculation.

The errors and the convergence order in temporal are calculated by

Error (τ ) =
U M

N − U 2M
N


∞

, order = log2[Error (τ )/Error (τ/2)]. (6.4)

In order to depict the conservation performance, the relative error of energy is calculated by

REm
γ =

⏐⏐(Em
γ − E0

γ

)
/E0

γ

⏐⏐ , (6.5)

here Em
γ denotes the discrete energy at tm .

xample 6.1 ([13]). First, we consider 1D NFSWEs (1.1)–(1.3) as

ut t + (−∆)α/2u + iut + |u|
2u = 0, (x, t) ∈ (−25, 25) × [0, T ], (6.6)

with u(x, 0) = (1 + i)xe−10(1−x)2
and ut (x, 0) = 0.

Without loss of generality, here we set α = 1.5 and T = 1 to confirm the accuracy of the explicit SAV-RRK meth-
ods (4.6). The errors and convergence order in time for the standard SAV-RK, SAV-RRK(RT) and SAV-RRK(IDT)
methods are listed in Table 1. We can see that all SAV-RRK(RT) methods keep the same convergence order as
the standard SAV-RK methods while the SAV-RRK(IDT) methods behave differently. The SAV-RRK(IDT)(2,2) and
SAV-RRK(IDT)(4,4) give convergence order which are higher than the expected orders as indicated in Theorem 5.4

while SAV-RRK(IDT)(3,3) gives convergence order reduced by one. This different behavior could be attributed to
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Table 1
Numerical errors and convergence order in time for Example 6.1 when N = 32, T = 1.

RK(Stage,Order) τ SAV-RK SAV-RRK(RT) SAV-RRK(IDT)

Error (τ ) Order Error (τ ) Order Error (τ ) Order

RK(2,2)

0.1 1.8552E−04 – 1.9063E−04 – 2.0325E−04 –
0.05 4.6601E−05 1.9931 4.7240E−05 2.0126 5.0585E−05 2.0065
0.025 1.1671E−05 1.9974 1.1750E−05 2.0074 1.2387E−05 2.0298
0.0125 2.9200E−06 1.9990 2.9294E−06 2.0040 2.9549E−06 2.0677
0.00625 7.3022E−07 1.9996 7.3130E−07 2.0021 6.6665E−07 2.1481

RK(3,3)

0.1 7.6862E−06 – 2.9857E−06 – 1.7245E−04 –
0.05 9.5269E−07 3.0122 3.9037E−07 2.9352 4.3389E−05 1.9907
0.025 1.1866E−07 3.0052 5.0077E−08 2.9626 1.0873E−05 1.9966
0.0125 1.4809E−08 3.0023 6.3449E−09 2.9805 2.7208E−06 1.9986
0.00625 1.8497E−09 3.0011 7.9858E−10 2.9901 6.8049E−07 1.9994

RK(4,4)

0.1 3.7701E−07 – 3.8894E−07 – 7.0733E−07 –
0.05 2.3572E−08 3.9994 2.3939E−08 4.0221 4.4585E−08 3.9878
0.025 1.4730E−09 4.0003 1.4843E−09 4.0115 2.8080E−09 3.9889
0.0125 9.2041E−11 4.0003 9.2397E−11 4.0058 1.7743E−10 3.9842
0.00625 5.7518E−12 4.0002 5.7630E−12 4.0029 1.1309E−11 3.9718

Fig. 1. maxm |γm − 1| and maxm |Sm (1)| for some relaxation methods in Example 6.1.

the convergence order of maxm |γm − 1| get improved by one order for SAV-RRK(RT)(2, 2) and SAV-RRK(RT)(4,
4) as displayed in Fig. 1.

Furthermore, we conduct an investigation into the relaxation coefficient γm at each step. We calculate maxm
|γm − 1| and maxm |Sm(1)| with different time step τ . The numerical results for some relaxation methods are
displayed in Fig. 1, from which one can see that the orders of the above two quantities are consistent with the
theoretical results. This confirms the theoretical results in Lemma 5.1 and Theorem 5.2. It is worth noting that
some similar results can be obtained when varying the value of α, although these phenomena are not shown here.

We also run a long time simulation till T = 1000 and plot the relative energy by the SAV-RRK(4,4) methods with
different α in Fig. 2, which indicates that the proposed schemes can preserve the energy exactly in discrete level
and the conservation performance is significantly better than the SAV method [4] and three-level linearly implicit
difference method [16].
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Fig. 2. Relative errors of energy with N = 32, τ = 0.01 for different α in Example 6.1.

Example 6.2. Now we consider the 2D NFSWEs (1.1) with initial values

u(x, y, 0) = sech
(
x2

+ y2) , ut (x, y, 0) = sin(x + y) sech
(
−2

(
x2

+ y2)) , (x, y, t) ∈ Ω × [0, T ],

here Ω = [−5, 5] × [−5, 5].

In order to reconfirm the applicability of the theoretical results in 2D case, the same arguments as in Example 6.1
re considered in the calculation. That is, α = 1.5 and T = 1. The obtained convergence order in temporal and the
elaxation coefficient γ are presented in Table 2 and Fig. 3, respectively. We can observe that the only difference
rom the 1D case is that the SAV-RRK(IDT) methods do not achieve a higher-than-expected order in the 2D case.

To demonstrate the effectiveness of the proposed methods in preserving energy, we perform long time simulations
ntil T = 100 and plot the relative energy errors using the SAV-RRK(4,4) methods with different α in Fig. 4. The
esults reveal that the proposed methods can preserve energy exactly at the discrete level, and the conservation

erformance is significantly better than that of the SAV method [4].
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Fig. 3. maxm |γm − 1| and maxm |Sm (1)| for some relaxation (RT) methods in Example 6.2.

Fig. 4. Relative errors of energy with N = 4, τ = 0.01 for different α in Example 6.2.
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Table 2
Numerical errors and convergence order in time for Example 6.2 when N = 4, T = 1.

RK(Stage,Order) τ SAV-RK SAV-RRK SAV-RRK(IDT)

Error (τ ) Order Error (τ ) Order Error (τ ) Order

RK(2,2)

0.1 3.0217E−03 – 3.0102E−03 – 1.5692E−02 –
0.05 7.4615E−04 2.0178 7.4702E−04 2.0106 9.6213E−03 0.7057
0.025 1.8513E−04 2.0109 1.8587E−04 2.0069 5.2472E−03 0.8747
0.0125 4.6090E−05 2.0060 4.6341E−05 2.0039 2.7312E−03 0.9420
0.00625 1.1497E−05 2.0032 1.1569E−05 2.0021 1.3923E−03 0.9721

RK(3,3)

0.1 1.2581E−04 – 3.9379E−05 – 3.2535E−03 –
0.05 1.6180E−05 2.9589 5.5726E−06 2.8210 7.9304E−04 2.0365
0.025 2.0532E−06 2.9783 7.4443E−07 2.9041 1.9546E−04 2.0205
0.0125 2.5863E−07 2.9889 9.6210E−08 2.9519 4.8500E−05 2.0108
0.00625 3.2454E−08 2.9944 1.2228E−08 2.9760 1.2078E−05 2.0056

RK(4,4)

0.1 7.9185E−06 – 8.0508E−06 – 3.4013E−05 –
0.05 4.9103E−07 4.0113 4.9644E−07 4.0194 3.3898E−06 3.3268
0.025 3.0531E−08 4.0075 3.0805E−08 4.0104 3.6901E−07 3.1995
0.0125 1.9026E−09 4.0042 1.9182E−09 4.0054 4.2681E−08 3.1120
0.00625 1.1873E−10 4.0022 1.1966E−10 4.0027 5.1191E−09 3.0596

Table 3
Numerical errors and convergence order in time for Example 6.3 when N = 4, T = 1.

RK(Stage,Order) τ SAV-RK SAV-RRK(RT) SAV-RRK(IDT)

Error (τ ) Order Error (τ ) Order Error (τ ) Order

RK(2,2)

0.1 1.3395E−03 – 3.3870E−03 – 2.1470E−02 –
0.05 3.4360E−04 1.9628 8.1480E−04 2.0555 1.0960E−02 0.9701
0.025 8.6945E−05 1.9826 1.9951E−04 2.0300 5.5113E−03 0.9918
0.0125 2.1865E−05 1.9915 4.9347E−05 2.0154 2.7600E−03 0.9977
0.00625 5.4823E−06 1.9958 1.2270E−05 2.0078 1.3807E−03 0.9993

RK(3,3)

0.1 3.5168E−05 – 4.3927E−05 – 3.8213E−04 –
0.05 4.3533E−06 3.0141 5.4825E−06 3.0022 8.0473E−05 2.2475
0.025 5.3902E−07 3.0137 6.8378E−07 3.0032 1.8560E−05 2.1163
0.0125 6.7058E−08 3.0068 8.5344E−08 3.0022 4.4475E−06 2.0611
0.00625 8.3615E−09 3.0036 1.0659E−08 3.0012 1.0883E−06 2.0309

RK(4,4)

0.1 5.3561E−07 – 3.2716E−06 – 3.7745E−05 –
0.05 3.6438E−08 3.8777 2.0654E−07 3.9855 4.8050E−06 2.9737
0.025 2.3735E−09 3.9403 1.2898E−08 4.0012 6.0237E−07 2.9958
0.0125 1.5146E−10 3.9700 8.0476E−10 4.0024 7.5303E−08 2.9999
0.00625 9.5636E−12 3.9853 5.0241E−11 4.0016 9.4105E−09 3.0004

Example 6.3 ([17]). Next, we consider the 2D nonlinear fractional wave equation{
ut t + (−∆)

α
2 u + F ′(u) = 0, (x, y, t) ∈ Ω × (0, T ],

u(x, y, 0) =
1
2 arctan

(
exp

(
−

√
x2 + y2

))
, ut (x, y, 0) = 0,

(6.7)

where Ω = (−10, 10) × (−10, 10).

Taking the potential energy F(u) = u2
( 1

4 u2
−

1
2

)
. The convergence order in time for α = 1.5 at T = 1 is shown

n Table 3. Also, the evolution of discrete energy for a long-time simulation (T = 100) is depicted in Fig. 5. These
ata are calculated by applying the SAV-RRK(4,4) method. The results indicate that the proposed methods is also

alid for the nonlinear fractional wave equations.
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w

α

F
l

Fig. 5. Relative errors of energy with N = 4, τ = 0.01 for different α in Example 6.3.

Example 6.4 ([7]). Finally, we consider the 2D fractional Klein–Gordon–Schrödinger equation{
i∂t u −

1
2 (−∆)

α
2 u + uφ = 0, (x, y, t) ∈ Ω × (0, T ],

∂t tφ + (−∆)
β
2 φ + φ − |u|

2
= 0, (x, y, t) ∈ Ω × (0, T ],

(6.8)

with the initial conditions

u(x, y, 0) = (1 + i) exp
(
−|x|

2) , φ(x, y, 0) = sech
(
|x|

2) , ∂tφ(x, y, 0) = sin(x + y) sech
(
−2|x|

2) , (6.9)

here Ω = [−10, 10] × [−10, 10].

Similar to the previous examples, some numerical errors and convergence order in time are listed in Table 4 for
= β = 1.5.
Furthermore, the relative energy with different α and β in a long-time simulation up to T = 100 is described in

ig. 6. The phenomenon depicted demonstrates that the proposed methods accurately preserve energy at the discrete
evel for the fractional Klein–Gordon–Schrödinger equation.
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Fig. 6. Relative errors of energy with N = 4, τ = 0.01 for different α in Example 6.4.

7. Conclusions

In this paper, we present a new approach to develop high-order explicit energy-conserving numerical methods
for the fractional nonlinear Schrödinger wave equations in two dimensions. The approach is proposed based on the
recently introduced scalar auxiliary variable approach and the relaxation Runge–Kutta methods. The conservation
properties of the proposed schemes are supported by theoretical analysis and numerical results. More numerical
results show that the proposed methods are also effective for other similar fractional conservative problems, such
as the nonlinear fractional wave equation and the fractional Klein–Gordon–Schrödinger equation, etc.
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Table 4
Numerical errors and convergence order in time for Example 6.4 when N = 4, T = 1.

RK(Stage,Order) τ SAV-RK SAV-RRK(RT) SAV-RRK(IDT)

Error (τ ) Order Error (τ ) Order Error (τ ) Order

RK(2,2)

0.1 1.1875E−03 – 1.8837E−03 – 9.5325E−03 –
0.05 2.7648E−04 2.1026 5.0394E−04 1.9023 6.7134E−03 0.5058
0.025 6.6514E−05 2.0555 1.3036E−04 1.9508 3.8805E−03 0.7908
0.0125 1.6300E−05 2.0288 3.3151E−05 1.9754 2.0757E−03 0.9026
0.00625 4.0339E−06 2.0146 8.3587E−06 1.9877 1.0723E−03 0.9529

RK(3,3)

0.1 8.7748E−05 – 1.9567E−04 – 3.1789E−03 –
0.05 1.1471E−05 2.9354 2.4630E−05 2.9900 8.2646E−04 1.9435
0.025 1.4684E−06 2.9657 3.0916E−06 2.9940 2.1079E−04 1.9712
0.0125 1.8580E−07 2.9824 3.8731E−07 2.9968 5.3231E−05 1.9854
0.00625 2.3370E−08 2.9911 4.8471E−08 2.9983 1.3375E−05 1.9927

RK(4,4)

0.1 3.0741E−06 – 4.0627E−06 – 1.0278E−04 –
0.05 1.9959E−07 3.9450 2.6020E−07 3.9647 1.3195E−05 2.9615
0.025 1.2698E−08 3.9744 1.6461E−08 3.9825 1.6711E−06 2.9811
0.0125 8.0044E−10 3.9876 1.0350E−09 3.9913 2.1024E−07 2.9906
0.00625 5.0238E−11 3.9939 6.4882E−11 3.9957 2.6365E−08 2.9953
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